
Calculating Costs for Quality of Security Service

Evdoxia Spyropoulou
Anteon Corporation

Monterey, CA

Timothy Levin
Anteon Corporation

Monterey,CA

Cynthia Irvine
Naval Postgraduate School

Monterey, CA

Abstract
This paper presents a Quality of Security Service

(QoSS) costing framework and demonstration. A method
for quantifying costs related to the security service and
for storing and retrieving security information is
illustrated. We describe a security model for tasks, which
incorporates the ideas of variant security services invoked
by the task, dynamic network modes, abstract security
level choices and resource utilization costs. The estimated
costs can be fed into a resource management system to
facilitate the process of estimating efficient task
schedules. Integration and scalability issues have been
taken into account during the design of the QoSS costing
demonstration, which we believe is suitable for
incorporation into a resource management system
research prototype1.

1. Introduction

The introduction of metacomputing and distributed
resource management mechanisms to the Internet and
World Wide Web will make available to users and
applications a large diversity of previously unavailable
network and computing resources. Middleware resource
management systems (RMSs) will use geographically
distributed, heterogeneous resources to support
applications with a wide range of computation needs
[3][2][5][4]. The RMS in such an environment is
responsible for: efficiently scheduling multiple
simultaneous tasks onto specific network resources;
supporting user requirements for performance and
security; and providing support for tasks to adapt to
changing resource availability.

As part of the process of estimating efficient task
schedules, the RMS must balance resource-usage costs
against user benefits, since there might not exist sufficient
resources to maximize the benefits to all users. Thus the
RMS must be able to quantify the costs associated with

1 This work was sponsored by the DARPA/ITO Quorum Program under

contract number .The views expressed in this paper are those
of the authors and do not reflect the official policy of the Department
of Defense of the U.S. Government

the entire range of network services. Various research
efforts address these issues. Huh et al [5] present a
method for unifying dynamic resource requirements
among heterogeneous hosts of a RMS, using a system
resource model with initial profiles for applications. A
scheduler for a RMS is presented by Dail et al [2] along
with its performance model, which requires “good
predictions of megabytes transferred, number of messages
initiated, overhead factor, benchmarks for program CPU
and memory utilization over the different target
architectures”.

Costing of security services in this context has
received little attention. Inherently, Quality of Service
(QoS) involves user requests for (levels of) services,
which are related to performance-sensitive variables in an
underlying distributed system. For security to be a real
part of QoS, then, security choices must be presented to
users, and the QoS mechanism must be able to modulate
related variables to provide predictable security service
levels to those users.

The notion of security variability has been discussed
before. A Quality of Protection parameter is provided in
the GSS-API specification [11]. This parameter is
intended to manage the level of protection provided to a
message communication stream by an underlying security
mechanism (or service). Another early reference to a
variable security service is that of Schneck and Schwan
[12], which discusses variable packet authentication rates
with respect to the management of system performance.

The challenge is to associate costs with the entire
range of network security services, and provide these
costs to a RMS scheduler. In previous work we have
discussed fundamental Quality of Security Service
(QoSS) concepts in terms of variant security mechanisms
and dynamic security policies [6], along with an analysis
of the layered and variable security services and
requirements presented to a RMS [8]. In [9] we defined a
preliminary security service taxonomy defining the range
of security services a RMS may need to manage. [10]
addressed the problem of how users and administrators
can understand and easily interact with the wide range of
security services and mechanisms, by providing methods

for translation of a simplified user abstraction of security
to detailed underlying mechanisms.

Using the base provided by our previous research, we
present in this paper a QoSS costing framework and
demonstration, which illustrates how costs associated
with network security services can be calculated and
supplied to a RMS. The method for modeling variant
security characteristics of applications and for computing
relevant costs and the method’s implementation, are
presented here. Through the use of high-level interfaces
−an administrative one for representing dynamic network
policies, and a user interface for selecting security levels
for the application− we demonstrate the way that security
could be treated as a QoS dimension.

The remainder of this paper is organized as follows:
Section 2 describes security offered to tasks in the
network context. In Section 3 the notion of variant
security and of security as a dimension of QoS is
presented. Section 4 discusses briefly the use of a security
vector for the description of network security policies. In
Section 5 we explain the idea of dynamic network
policies associated with the system’s mode. The
interaction with users for selection of security level for
tasks is discussed in Section 6. Section 7 explains our
approach for calculating costs related to security. In
Section 8 we present in detail the QoSS Costing
Demonstration; and a conclusion follows in Section 9.

2. Tasks and Security Services in a Network
System

A network system is defined as the totality of network-
accessible resources. In the network computing context,
users or user programs may request the execution of
applications/tasks, which are scheduled by an underlying
control program to execute on local or remote computing
resources. A task’s utilization of various network services
and resources may be intermediated by different QoS
middleware mechanisms (QoSM). Thus, a task is invoked
in a sequence:
− The user activates the application through some

interface with an application manager.
− The application is intermediated by the QoSM.
− The QoSM submits the application to the system [6].

The execution of the task may access or consume a
variety of resources such as: local I/O device bandwidth,
internetwork bandwidth; local and remote CPU time;
local, intermediate (e.g., routing buffers) and remote
storage.

The application on the network is presented with
various security services: this means that (at some point
or) during its execution it may utilize certain security
services. A security service is a high-level abstract
resource providing security functionality such as:

authentication, auditing, privacy, integrity, intrusion
detection, non-repudiation and traffic flow confidentiality
[7]. A security service typically consumes other low level
system resources, and may be implemented by one or
more security mechanisms.

In [9] a preliminary security service taxonomy is
presented with example mechanisms for each service.
Each security mechanism is associated with a service
area, which indicates the general topographical
component of the network in which the security or
protection is effective. The taxonomy identifies three
service areas: end system (e.g., a client or server system),
intermediate node (e.g., routers, switches), and network
connection (i.e., the “wire” connecting various systems
and nodes). An additional total subnet service area
identifies mechanisms that cannot be assigned exclusively
to either of the above areas (e.g., boundary control
mechanisms).

3. Quality of Security Service and Variant
Security

For a Quality of Service (QoS) dimension to be
supported means that users can request or specify a level
of service for one or more attributes of this dimension,
and the underlying QoS control mechanism is capable of
entering into an agreement to deliver those services at the
requested levels [1][15]. Therefore, the control
mechanism must be able to modulate the level of the
service to individual subscribers (e.g., users).

Users may have expectations (i.e., functional and
assurance requirements) with respect to the security
services they are provided. Quality of Security Service
(QoSS) has the meaning that security and security
requests can be managed as a responsive “service” for
which quantitative measurement of service “efficiency” is
possible [8].

QoS mechanisms can be more effective with security
appearing as a QoS dimension: when variable levels of
security services and requirements are presented to users
or network tasks, the underlying system can adapt more
gracefully to changes in resource availability during the
execution of a task, and thereby do a better job at
maintaining requested or required levels of service in all
of its dimensions.

The enabling technology for both QoSS and a security-
adaptable infrastructure is variant security, or the ability
of security mechanisms and services to allow the amount,
kind or degree of security to vary, within predefined
ranges. This notion of network Quality of Security
Service has the potential to provide administrators and
users with more flexibility and potentially better service,
without compromise of network and system security
policies.

To be general, we will define that all security
requirements have a range of permissible behavior. In
some cases, a range may be unitary, or degenerate, in
which case it represents no choice. Where a range
represents a choice, the requirement is termed security
variant [6]. In the same sense all system security services
can be considered as having a range: since they are
invoked at the discretion of the user or application, the
range is at least binary (i.e., invoked or not invoked).

This notion of variant requirements and security ranges
may, at first, seem strange. For many, either you have
security or you don’t. This is true on a gross scale, since
without some minimum level of security, a system will be
considered inadequate for user requirements. But if a
user’s minimum requirements are met, there can be some
choice with respect to what is adequate.

Some examples in which security ranges and choices
could be available:
− collaborative applications, such as video

teleconferencing with shared electronic boards and
application suites: if a group member is participating
in the collaboration from a hotel room in a foreign
country known for government support of corporate
espionage, his security requirements and choices will
be quite different than if he were in “friendly”
territory. These security choices may form a range
from which the user or application can select, and can
include different levels of authentication,
confidentiality and integrity.

− a variable packet authentication scheme [12]: the
recipient might be satisfied if a certain percentage of
each packet in an image stream was authenticated
(e.g., 80% to 100%); this might have applicability for
image display, especially considering that the low
order bits of each byte are not very significant
visually, in some display protocols.

− an Intrusion Detection System (IDS): an
administrator may choose to run the IDS within a
range rather than a fixed level. There would be a
minimal level of IDS processing below which the
system would not be permitted to fall, but the IDS
would be balanced against performance requirements
of the organization’s tasks. Thus the IDS might
perform more thoroughly (with deeper histories)
when the system is lightly loaded than during peak
hours. The administrator might also choose to set an
upper limit to IDS performance.

The following are some example security variables [7],
with characterizations of how they could be specified or
measured:
• Strength of cryptographic algorithm, e.g., RSA, DES:

measured in terms of the work factor associated with
a brute force attack

• Length of cryptographic key: characterized by bit-
length

• Percentage of packets authenticated: characterized by
percentage of total (e.g., a multimedia environment
might tolerate a percentage of data modification or
loss)

• Security functions present in destination job-
execution environment: characterized by operating
system or boundary control security policy
enforcement mechanisms.

• Confidence of policy-enforcement in remote login
environment: characterized by third party evaluation

• Robustness of authentication mechanism: here the
range might span weak password, strong password,
biometric, and smart cards with on-board display and
input interfaces.

4. Security Policy and Security Vector

The body of rules for resolving network security issues
is called the network security policy. These policies
consist of broad policy jurisdictions, which can be
decomposed typically, into functional requirements.
Previous work [8] represents the n-dimensional space of
functional security requirements involving a task
executing in a network environment, as a vector (S) of
security components. Each component (S.c) specifies a
boolean functional requirement, and it may indicate
positive requirements as well as negative constraints. By
convention a component S.c may contain only one variant
clause, i.e. one security variable.

Examples of security vector components are:

S.1: level(user) >= level(resource)

S.2: length of confidentiality encryption key >= 64,
 <= 256

S.3: % packets authenticated >= 50, <=90

Requirements for a specific security service may be
represented by one or more components, indicating a
service sub-vector. A task executed in the network
environment may invoke many security services. The
union of service sub-vectors, for all the task’s services,
forms the task’s security vector S.

When the number of possible choices indicated in a
component S.c is greater than one, we talk about a variant
security component, since the underlying control program
has a range within which it may allow the job to execute
with respect to the policy requirement.

A range is a set of elements, which define the possible
choices for a security variable [6]. The elements of a
range are related, because some are more secure than
others, providing thus a means for ordering them. With
respect to relative security, encryption algorithms may be
ordered by crypto-analytic work factor, subsets of a
network may be partially ordered by set inclusion, a

packet encryption percentage can be linearly ordered
based on numeric value.

5. Network Mode and Dynamic Security
Policies

A task is characterized by a set of security
requirements that must be met. The network operational
status or “mode” could influence the security restrictions
and available security services for the task, because under
certain conditions, the user or administrator may be
willing to accept more (or less) security for a given
application. For example, during an emergency, a military
commander might decide to forgo certain security
protocols in order to get some important information
transmitted quickly. This decision changes the security
policy, but the actual policy arrived at may not be clearly
understood.

With a dynamic security policy, the security
restrictions and available security policies allow their
functional requirements and implementation mechanisms
to be examined with respect to the overall policy, prior to
being fielded, rather than depending on an ad hoc review
[10]. If dynamic policies are created before deployment of
the computer network, the network can respond to
changing environments, by having access to a predefined
set of alternate security policies. For example, a corporate
intranet might have a mode indicating that the system is
under attack from the internet. In this mode, it might be
desired for a higher degree of network security to be in
place. Or, an Internet Service Provider might receive a
large amount of simultaneous requests and enter an
“impacted” mode, in which certain optional security
services would be curtailed for efficiency. In each of these
cases, the effects of changes to the security mechanisms
would be predefined and limited to meet the desired
alternate security policy.

With a dynamic security policy, the acceptable range
for the security variable of a security vector’s component
depends on the network “mode”[8]. We refer to three
example modes: normal, impacted, emergency.
Representing with Smode a separate security vector for
each operational mode, components could be assigned
different values, for example:

Snormal.a: length of confidentiality encryption key >= 64,
 <= 256

Simpacted.a: length of confidentiality encryption key >= 64,
 <= 128

Or, for example, policy makers might decide that the
policy should remain in force regardless of the network
mode:

Snormal.b = Simpacted.b = Semergency.b:
clearance(user) = classification(resource)

The network policy can be expressed through the
allowable range of values for the requirement
components. Assuming that a security variable A can take
all values from 0 to 1 (e.g., a packet authentication rate),
Figure 1 shows the policy’s interpretation for the values
of the variable in each mode. In normal mode we accept a
range of values from 0.5 to 1, in impacted mode we move
to lower values, whilst emergency means high security
without many choices.

0 0.2 0.4 0.6 0.8 1

Emergency

Impacted

Normal

Values for security variable A

Figure 1: A security policy interpretation for
different network modes

A different approach to what each mode would mean
for the system, is expressed by Figure 2, where
emergency mode is closer to a “battle short” approach, in
which to accomplish the mission as quickly as possible
the security variable’s value must be low. In normal mode
we offer a generally higher level for this security variable.

0 0.2 0.4 0.6 0.8 1

Emergency

Impacted

Normal

Values for security variable A

Figure 2: An alternative interpretation for
network modes

Ranges for different modes can have overlapping
values, or certain values may be completely excluded
from the permissible set of values of any mode for a
security variable. Furthermore the range need not be
continuous (e.g. there could be a step of increment, sets of
discrete values).

6. User Choice for Security Level

The over-arching network security policy demands
some minimum levels of security service for a task,

indicating also the maximum security levels that can be
provided by the system. Selections for QoSS may be
provided to users to any degree of security within these
limits. Thus, a system can always provide more security,
at the user’s discretion, than the minimum required by the
base security policy, while still complying with the
policy.

Still, the security services and underlying mechanisms
may present too many variables and choices for users or
applications to manage without automated support.
Instead of presenting to the user all combinations of
security mechanisms and parameters for the variant
services, we can offer a simplified abstraction of security,
in the form of security level choices, like “high”,
“medium”, “low” (e.g. as is commonly seen now in web
browsers and personal firewalls).

The elements of the simple user interface can be
mapped to detailed mechanism invocations via a
translation matrix [10]. The security administrator or
system security engineer would pre-select various specific
mechanisms and settings that are assigned to the security
variables for each of the three choices offered to the user.

Figure 3 shows this translation of abstract security
level to predefined settings for the variable A of the
previous paragraph, assuming we are on normal mode.

Figure 3: Security variable’s A settings in normal
mode for abstract security level choices

A security level can be mapped to a sub-range within
the acceptable range, or could be mapped to a specific
value. In the former case the underlying RMS would be
responsible for assigning security services and resources
to the user that would meet the security profile indicated
by the translation matrix. If corresponding services or
resources could not be found to meet user request, then
the RMS would need to negotiate different degrees of
service with the user, or perhaps use a default translation.

7. Costs for Variant Security

Why would a user request anything less than the
highest level of security? The answer is cost. As with
multimedia image resolution, users will generally desire
the greatest amount of security (or image fidelity)
available, but this desire is tempered by cost. Cost may

take the form of monetary charges (unlimited bandwidth
but at a high cost per byte) or performance degradation
(for high resolution, processing and downloads times will
be long), for example. When cost is very high (e.g., slow
response time, image display), users may be willing to
accept security (or imagery) that is less than their ideal
level of service [6].

If a particular security mechanism is “fixed” (i.e.,
always applied) then the overhead for the mechanism is
part of the normal cost of running the task and the normal
costing mechanism used by the RMS will suffice. For
variant security mechanisms, however, the security
overhead will vary, depending on the user’s QoS request.
Some task invocations will utilize little, if any, of the
variant mechanism and other invocations may utilize the
mechanism at an increased level. Also, the scheduler may
adapt security support, while maintaining any minimum
system security policy requirements, in order to schedule
the tasks most efficiently. The RMS must calculate how
much the use of the security mechanism will increase the
cost of the task, according to the specific security “level”
requested. For this reason the RMS must have access to
detailed information about the resource cost (as well as
the task’s requested QoS) for each variant security
mechanism. Near-optimal solution selection for task
schedules depends on the accurate estimation of per-task,
per-resource, cost of security [9].

In our approach for quantifying the costs related to a
task’s security requests, we refer to costs relative to every
security service invoked by the task. Each service may
access some or all of the following resources: CPU time,
memory, bandwidth (other cost factors are possible, e.g.
disk space, and will be added to our framework). The
resource usages may be temporary or persistent. That’s
why we discriminate between start-up and streaming
costs.

For example the Confidentiality on the Network
Connection service, using a symmetric algorithm like
Twofish [13] for data encryption, would require some
extra processing during start-up for the initialization of S-
boxes. This is a one-time cost during the establishment
phase of the service. On the other hand bandwidth costs
for the confidentiality service are streaming costs only, in
the form of extra bytes per packet due to the encryption
algorithm.

In a QoS system every application would have its
resource costs modeled as shown in Table 1, where costs
expressions are functions of security variables. A security
variable may participate in more than one cost expression.

We refer to CPU costs in clocks (or clocks/packet),
memory costs in bytes, bandwidth costs in bytes (or
bytes/packet). In another approach, all measures could be
unitless and normalized within a common framework. A
careful description of the semantics of the units with
respect to each security service would then be required.

Normal

0 1

Values for security variable A

Mode limit

LOW MEDIUM HIGH

Table 1: Model for security resource costs of an application

CPU costs Memory costs Bandwidth costs
Task’s

Security
Task’s Costs
Security
Services

Start-up Streaming Start-up Streaming Start-up Streaming

Service 1 cost expression … … … … cost expression

… … … … … … …

Service N cost expression … … … … cost expression

The cost expressions and units we use for our research are
preliminary. Our purpose is to demonstrate how variant
security can be modeled and the related costs quantified.
The intended use of the cost results is to supply needed
information to a RMS for efficient scheduling of tasks,
treating security as a QoS dimension.

In the next Section, the QoSS Costing Demonstration
is an implementation paradigm for security costs’
quantification. The cost expressions used should be
considered as placeholders. Continued effort is required to
determine the best formulas for calculating resource costs
for security services.

8. SecurityCosts: a QoSS Costing
Demonstration

The Quality of Security Service Costing
Demonstration illustrates the concepts described so far
and provides a method for quantifying costs related to the
security service. Using the taxonomy we identify services
(discriminating between service areas) that tasks may
invoke, and security mechanisms that implement them.
We pre-define sets of security settings, corresponding to
network modes and user security level choices. Costs for
a task are calculated and expressed in terms of resources.
These costs depend on the selected security characteristics
of the specific task, and they can be fed into a RMS to
facilitate the process of estimating efficient task
schedules. The ongoing accuracy of cost formulas could
be ensured by comparison with continuously updated
historical data of resource usage kept by the RMS [4]

The implementation approach and the performance of
the QoSS Costing Demonstration make it suitable for
incorporation into a research prototype of a RMS. The
RMS could request presentation of costs in any layout
suitable for its processing. For example:
• costs for all security services, resources and cost

types
• costs for a specific resource for all security services
• initialization or streaming costs only, for one (or all)

resources

• costs for a particular security service of the task.
The current implementation works on a “one-time

request” basis. This means that one specific costing
service is requested each time, the request is processed,
and results are presented. For subsequent requests the
cycle repeats exactly the same. Scalability issues have
been taken into account, so future work will address
multiple non-sequential requests for estimation of security
costs for tasks.

8.1 Concept of Operation

A common sequence of actions in the QoSS Costing
Demonstration would be:
• The user selects from a given list the application/task,

which he wishes to submit for execution. Then all
internally modeled security information relevant to
the application is loaded to system memory.

• The network’s current mode is initially set to a
default value (normal). The network administrator,
depending on present system status can change this
value. The specific security vector of requirements
for this mode is activated, defining thus the range
within which security variables can vary.

• Then the user indicates the desired security level he
wishes to be applied during the processing of the
task. With this selection, specific values (within the
ranges accepted by the policy) are assigned to each
security variable.

• The user is then ready to request processing of costs.
This action actually plugs the values of security
variables into the set of cost formulas that apply to
the specific task’s resource needs.

• Results are expressed in terms of per-service, per-
resource, start-up and streaming costs.

It should be noted that the demonstration exposes some
of the steps that would normally be hidden in a production
system.

There is a special interface in QoSS Costing
Demonstration through which the administrator can insert
the model of a new task/application. What he actually

Figure 5: FTP security requirements for Normal mode

does is define the security services invoked by the new
task, the sets of security requirements for every mode, the
sets of specific values for security parameters for every
mode and choice, and the cost formulas related to the
task’s requirements in resources.

8.2 Security Information Modeling Aspects

Various structures are used in the internal
demonstration logic [14] to model the variant security
characteristics of the task under cost estimation:

The set of security requirements for a task forms a
Task Requirements Vector (TRV – see S in Section 4) and
there are conceptually three TRVs, one for each mode,
incorporated in the notion of a Mode Service Matrix
(MSM).

To describe a set of specific security settings for a task,
we use a Task Variable Vector (TVV). Availability of
abstract user security level choices, leads to the need for a
triplet of TVVs (one for each of the low, medium or high
security choices) described by a Choice Variable Matrix
(CVM). Furthermore the effect of network mode on the
security settings is expressed through a Mode Choice
Matrix (MCM), which contains a set of three CVMs one
for each mode.

The cost for a resource during execution of a specific
task is specified in a resource cost expression. Costs for
all resources of a service are described in a Service Cost
Vector and costs for all services invoked by a task are
associated with a certain Cost Matrix.

Pre-defined costing information for numerous tasks,
and the security services they invoke, will be necessary if
QoSS Costing Demonstration is going to work in
conjunction with a RMS. This information can be stored
in a database or in a set of files.

The main storage structures needed are:
− TASK: contains for each task indexes to corresponding

Mode Service, Mode Choice and Cost Matrices.
− MSMtoTRV: contains for each Mode Service Matrix

indexes to Task Requirement Vectors according to
network mode.

− TRV: contains the requirement components of a task
− MCMtoCVM: contains for each Mode Choice Matrix

indexes to Choice Variable Matrixes according to
network mode.

− CVMtoTVV: contains for each Choice Variable
Matrix indexes to Task Variable Vectors according to
security level choice.

− TVV: contains the specific settings for the security
variables of the task.

− CM: contains cost expressions for each resource for
the security services invoked by the task.

8.3 Example

In this section we walk through the QoSS Costing
Demonstration with an illustrated example.

In the beginning the user selects from a given list the
application he wishes to execute in the network. Suppose
he selects FTP.

It should be noted that it is not the purpose of this
paper to provide an exhaustive or accurate model of FTP
or other applications. The security information relevant to
FTP is a combination of empirical and hypothetical data,
and is used to demonstrate our ideas.

The security services (from the taxonomy) that FTP
invokes are:
• Integrity on the Network Connections, since we want

to assure that data travelling along the network will
not be corrupted, and

• Authenticity on the End System, which means that
the user may need to provide some sort of
identification when connecting to the FTP site.

The security vector of requirements S for this task
includes three components: the first two are associated
with the Integrity on the Network Connections service,
and the third is associated with the Authenticity at the End
System service.
• SFTP.1 expresses a requirement that the network

communications will be cryptographically signed to
provide integrity at the packet level, with a rate of
integrity checking within a specific range [12].

• SFTP.2 states that the symmetric key length will be
within a certain range, assuming the use of an
algorithm that accepts different key sizes.

• SFTP.3 describes the acceptable types for access
authentication. We assume there are three possible
types: a user can log on without a password, he can
use a simple password, or use a one-time password
(crypto challenge-response). We symbolically
enumerate these types as 0, 1, and 2.

The ranges for the security variables at normal mode
can be seen in Figure 5.

If the mode was “impacted” for example, then the
acceptable range for the SFTP.1 requirement would be
between 0.2 and 0.5, and the SFTP.2 requirement would
force the key length to be 56.

In the rest of this Section, we assume that the network
is set to normal mode.

Then the user selects, through the high level interface
illustrated in Figure 6, the level of security he desires to
be applied during execution of the task he submits.

Figure 6: Interface for security level selection

What this selection actually does is map the high level
security specification to a specific set of values to be
assigned to the security variables. Table 2 shows what
these values would be for all security levels.

How do our selections up to now influence the
resources needs of the FTP application? Each security
service invoked will probably increase the application
demands for (at least some of) CPU, memory, bandwidth,
either during start-up or during execution (streaming
cost).

The type of cost formulas we used for the FTP task for
CPU, memory and bandwidth can be seen in Tables 3, 4,
and 5 respectively. In these formulas
− KEY_LENGTH stands for the security variable

indicating the symmetric key length
− INTEGRITY_RATE stands for the security variable

indicating the packet integrity rate
− AUTHENTICATION_TYPE stands for the security

variable indicating the type of authorized access
− a1, a2, a3, a4, a5, a6, a7, b1, b3, b4, b5, b6, c1 are

constants
− f(…) indicates a non-linear dependency.

For the Integrity on Network Connections service for
example, CPU start-up cost involves processing related to
the symmetric key, while streaming cost is influenced by
processing related to the packet integrity rate. Key length
influences memory costs. A certain bandwidth−depending
on the packet integrity rate− is consumed for every packet
due to the Integrity service.

Table 2: Security Variables Values for all security levels in normal mode

Security Level Choice
Security Variable

LOW MEDIUM HIGH

Packet Integrity Rate 0.6 0.8 1

Symmetric Key length 56 96 128

Type of Authorized Access No password (0) Simple password (1) Simple password (1)

Table 3: CPU cost formulas for FTP

CPU costsFTP Security Cost
Expressions

FTP Sec. Services Start-up (clocks) Streaming(clocks/packet)

Integrity on
Network Connections a1 * KEY_LENGTH + b1 a2 * INTEGRITY_RATE

Authenticity on
End System a3 * f (AUTHENTICATION_TYPE) + b3 0

Table 4: Memory cost formulas for FTP

Memory costsFTP Security Cost
Expressions

FTP Sec. Services Start-up (bytes) Streaming(bytes)

Integrity on
Network Connections a4 * KEY_LENGTH + b4 a5 * KEY_LENGTH + b5

Authenticity on
End System a6 * f (AUTHENTICATION_TYPE) + b6 0

Table 5: Bandwidth cost formulas for FTP

Bandwidth costsFTP Security Cost
Expressions

FTP Sec. Services Start-up (bytes) Streaming(bytes/packet)

Integrity on
Network Connections 0 a7 * INTEGRITY_RATE

Authenticity on
End System c1, if AUTHENTICATION_TYPE ≠ 0 0

When the user requests processing of cost data the set
of security variable values of the FTP task for the current
mode and choice are plugged into the cost formulas. The
results for normal mode can be seen in Table 6 and Table
7 for “low” and “high” security level respectively.

These results show what is generally known: there is a
price to pay for high security. For example, costs for the
authenticity service are 0 in the low security level, since
the user logs on without a password, while at the high
level, where a more sophisticated method for
authentication is required, these costs are increased.
Another remark is that since authorized access is granted
once, there are no streaming costs for the Authenticity at
the End System service. Similar observations can be made
for the costs of the Integrity on Network Connections
service.

9. Conclusion

In this paper a Quality of Security Service Costing
Demonstration has been presented, which provides a
framework for quantifying costs related to the security
service and for storing and retrieving security
information. A network security model for tasks has been
described. In this model the ideas of variant security

services invoked by the task, dynamic network modes,
security level choices and resource utilization costs are
incorporated.

The estimated costs can be fed into a RMS to facilitate
the process off estimating efficient task schedules.
Integration and scalability issues have been taken in mind
during the design of the QoSS Costing Demonstration,
which we believe is suitable for incorporation into a RMS
prototype.

The following related areas need further research:
• determination of formulas for calculating resource

costs for a range of security services
• determination of best units for cost measures
• population of the demonstration with realistic costing

data
• enumeration of specific security mechanisms with

respect to the described taxonomy
• organization of the security vector into a “normal”

form with sub-vectors or hierarchies corresponding to
security policies jurisdictions

• multiple non-sequential requests for estimation of
security costs for tasks.

Our ongoing work will address these issues.

Table 6: Resource costs for FTP for LOW security level at normal mode

CPU costs Memory costs Bandwidth costsLOW level
FTP Security

Security Costs
Services

Start-up
(clocks)

Streaming
(clocks/packet)

Start-up
(bytes)

Streaming
 (bytes)

Start-up
 (bytes)

Streaming
(bytes/packet)

Integrity on
Network Connections 5560 24 6200 5176 0 4.8

Authenticity on
End System 0 0 0 0 0 0

Table 7: Resource costs for FTP for HIGH security level at normal mode

CPU costs Memory costs Bandwidth costsHIGH level
FTP Security

Security Costs
Services

Start-up
(clocks)

Streaming
(clocks/packet)

Start-up
(bytes)

Streaming
 (bytes)

Start-up
 (bytes)

Streaming
(bytes/packet)

Integrity on
Network Connections 6280 40 6272 5248 0 8
Authenticity on
End System 1200 0 69632 0 100 0

10. References

[1] Chaterjee, S., Sabata, B., Sydir, J., “ERDoD QoS
Architecture”, SRI Technical Report, ITAD-1667-TR-98-
075, Menlo Park, CA, May 1998

[2] Dail, H., Obertelli, G., Berman F., Wolski, R., Grimshaw,
A., “Application-Aware Scheduling of a
Magnetohydrodynamics Application in the Legion
Metasystem”, Proc. of the Ninth Heterogeneous Computing
Workshop (HCW 2000), Cancun, Mexico, May 2000, pp.
216-228

[3] Foster, I. and Kesselman, C., “Globus: A Metacomputing
Infrastructure Toolkit”, Intl J. Supercomputer applications,
11(2):115-128, 1997

[4] Hensgen, D., Kidd, T., St. John. D. Schnaidt, M., Siegel,
H.J., Braun, T., Maheswaran, M., Ali, S., Kim, J., Irvine,
C., Levin, T., Freund, R., Kussow, M., Godfrey, M.,
Duman, A., Carff, P., Kidd, S., Prasanna, V., Bhat, P.,
Alhusaini, A., “An Overview of MSHN: The Management
System for Heterogeneous Networks”, Proc. of the Eighth
Heterogeneous Computing Workshop (HCW’99), San
Juan, Puerto Rico, April 1999, pp. 184-198

[5] Huh, E.N., Welch, L.R., Shirazi, B.A., Cavanaugh, C.D.,
“Heterogeneous Resource Management for Dynamic Real-
Time Systems”, Proc. of the Ninth Heterogeneous
Computing Workshop (HCW 2000), Cancun, Mexico, May
2000, pp. 287-296

[6] Irvine, C. and Levin, T., “The Effects of Security Choices
and Limits in a Metacomputing Environment”, Technical
Report NPS-CS-00-004, Naval Postgraduate School,
Monterey, CA, January 2000

[7] Irvine, C. and Levin, T., “Quality of Security Service”, to
appear in Proc. of New Security Paradigms Workshop
2000, Cork, Ireland, September 2000

[8] Irvine, C. and Levin, T., “Toward Quality of Security
Service in a Resource Management System Benefit

Function”, Proc. of the Ninth Heterogeneous Computing
Workshop (HCW 2000), Cancun, Mexico, May 2000, pp.
133-139

[9] Irvine, C. and Levin, T., “Toward a Taxonomy and Costing
Method for Security Services”, Proc. of the Computer
Security Applications Conference, Phoenix, AZ, December
1999, pp. 183-188.

[10] Irvine, C. and Levin, T., “A Note on Mapping User-
Oriented Security Policies to Complex Mechanisms and
Services”, Technical Report NPS-CS-99-08, Naval
Postgraduate School, Monterey, CA, June 1999.

[11] Linn, J., Generic Security Service Application Program
Interface, IETF Request for Comments: 1508, September
1993

[12] Schneck, P.A. and Schwan, K, “Dynamic Authentication
for High-Performance Networked Applications”, Technical
Report GIT-CC-98-08, Georgia Institute of Technology,
College of Computing, Atlanta, GA, 1998

[13] Schneier, B., Kelsey, J., Whiting, D., Wagner, D., Hall, C.,
Ferguson N., “Twofish: A 128-Bit Block Cipher”,
Counterpane Systems,
http://www.counterpane.com/twofish-paper.html,June 1998

[14] Spyropoulou, E., Levin, T., Irvine, C., “Quality of Security
Service Costing Demonstration for the MSHN Project”,
Technical Report NPS-CS-00-007, Naval Postgraduate
School, Monterey, CA, April 2000

[15] Vendatasubramanian, N. and Nahrstedt, K., “An Integrated
Metric for Video QoS”, ACM International Multimedia
Conference, Seattle, Wa., November 1997

